Gas Leak on Converter 1st Pass Outlet

less than 1.893 $[(k+1)/2]^{k/(k-1)}$ therefore the flow is non-choked (i.e. **subsonic**), **AND** the following equation applies

$$Q = C A P \sqrt{\left(\frac{2 g_c M}{Z R T}\right) \left(\frac{k}{k-1}\right) \left[\left(\frac{P_A}{P}\right)^{2/k} - \left(\frac{P_A}{P}\right)^{(k+1)/k}\right]}$$

Q = mass gas flow (lbs/s)			$K = C_p/C_v$ of the gas	1.4	po.a.	p9		
C = discharge coefficient	0.65		P = source pressure absolute (lb/ft²)	3053	21.2	6.5	180	•
Equivalent Diameter of hole (in)	0.25		P_A = ambient pressure absolute (lb/ft ²)	2117	14.7			
$A = area of hole (ft^2)$	0.00034		M = molecualr weight of gas	34				
g _c = gravitational constant (ft/s)	32.17		Z = compressibility factor	1.07706293				
R = gas constant (ft-lb/lb mol - °R)	1543.3		Release duration (seconds)	86,400				
T = temperature (°R)	1593	612 °C	SO ₃ concentration in gas (wt%)	19 :	See Notes	below for	comment reg	arding calculations
Molecular weight of SO ₃	80		SO ₂ concentration in gas (wt%)	5 :	See Notes	below for	comment reg	arding calculations
			Molecular weight of SO ₂	64				

Intermediate Calculations:

0.000826

3.5

0.59263

0.533753

0.676132

Mass Calculations:

Q =

0.0088 lbs/s

Total mass:

762 lbs

Total SO₃ mass:

145 lbs

Total SO₂ mass:

38 lbs

Reference: "Perry's Chemical Engineering Handbook, 6th Edition, McGraw-Hill 1984"

SO₃/SO₂ concentration in gas 10.1 mol% according to DCS immediately prior to start of leak.

SO₃/SO₂ design concentration in gas 10.7 mol% (8% SO3 and 2.7% SO2).

Therefore SO₃ concentration is 75% of total SO₃/SO₂ = 10.1 x 75% = 7.6% x 80/100 = 6.1 wt%.

Therefore SO_2 concentration is 25% of total $SO_3/SO_2 = 10.1 \times 25\% = 2.5\% \times 64/100 = 1.6 \text{ wt}\%$.

This is NOT the way to calculate wt% from vol%

psia

psig

in WC

